metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{2-[(2-pyridyl)iminomethyl]phenolato{copper(II)

Jinling Miao,^a Zhitong Zhao,^a Hongwei Chen,^a Dagi Wang^b and Yong Nie^a*

^aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering. Liaocheng University, Liaocheng 252059, People's Republic of China. Correspondence e-mail: chm_niey@ujn.edu.cn

Received 1 July 2009; accepted 5 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.077; data-to-parameter ratio = 11.9.

In the title compound, $[Cu(C_{12}H_9N_2O)_2]$, the Cu^{II} atom lies on a crystallographic inversion center and has a nearly squareplanar geometry. The Cu^{II} center coordinates to the phenolic O and azomethine N atoms of the two symmetry-related 2-[(2pyridyl)iminomethyl]phenolate ligands. The pyridyl N atoms do not coordinate to the Cu^{II} atom but participate in intramolecular C-H···N hydrogen bonding. π - π stacking between the benzene rings and between the pyridyl rings [centroid–centroid distances 3.8142 (5) and 3.8142 (5) Å, respectively] links the molecules into a chain propagating parallel to [100].

Related literature

For the preparation of the title compound by an electrochemical method, see: Castineiras et al. (1989), and by a solution method, see: Parashar et al. (1988). For the crystal structures of related compounds, see: Castineiras et al. (1989).

Experimental

Crystal data

α β

	00 200 (1)0
$[Cu(C_{12}H_9N_2O)_2]$	$\gamma = 90.289 (1)^{\circ}$
$M_r = 457.96$	$V = 487.16 (9) \text{ Å}^3$
Triclinic, P1	Z = 1
a = 3.8142 (5) Å	Mo $K\alpha$ radiation
b = 11.217 (1) Å	$\mu = 1.15 \text{ mm}^{-1}$
c = 11.9001 (12) Å	$T = 298 { m K}$
$\alpha = 106.884 \ (2)^{\circ}$	$0.41 \times 0.17 \times 0.15 \text{ mm}$
$\beta = 90.374 \ (1)^{\circ}$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.650, T_{\max} = 0.846$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	142 parameters
$vR(F^2) = 0.077$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
695 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

2547 measured reflections 1695 independent reflections

 $R_{\rm int} = 0.015$

1481 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1 \cdots N1$	0.93	2.29	2.684 (3)	105

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the University of Jinan (B0605) for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2176).

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castineiras, A., Castro, J. A., Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Polyhedron, 8, 2543-2549.

Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m904 [doi:10.1107/S1600536809026051]

Bis{2-[(2-pyridyl)iminomethyl]phenolato}copper(II)

J. Miao, Z. Zhao, H. Chen, D. Wang and Y. Nie

Comment

The Schiff base, *N*-salicylidene 2-aminopyridine, has been widely studied as a potential tridentate ligand. The title compound has been prepared using an electrochemical method by Castineiras *et al.* (1989) starting from *N*-salicylidene 2-aminopyridine and copper. Parashar *et al.* (1988) reported that refluxing a mixture of $Cu(OAc)_2$ (OAc = acetato) and *N*-salicylidene 2-aminopyridine in a 1:2 molar ratio resulted in a green complex having the same formula but with an octahedral geometry deduced from spectroscopic properties. We have found that a simple method of solution diffusion produces the brown title compound.

As shown in Fig. 1, the copper atom lies on a crystallographic inversion center and has a square planar geometry. The copper center coordinates to the phenolic oxygen and the azomethine nitrogen atoms of the two symmetry related groups. The pyridyl nitrogen atoms do not coordinate to the copper. The Cu—O bond lengths are 1.9212 (17) Å, and the Cu—N bond lengths are 2.0216 (19) Å, respectively, all similar to those reported in the related structures (Castineiras *et al.*, 1989).

The interplane dihedral angles are found to be as follows: 31.60 (7)° between the N₂O₂ plane and the benzene ring, 54.28 (7)° between the N₂O₂ plane and the pyridyl ring, and 22.75 (9)° between the benzene and the pyridyl ring. The intramolecular hydrogen bond C1—H1…N1 (2.684 (3) Å, 105°, Table 1) further stabilizes the whole structure. The π - π stacking between the benzene rings (centroid to centroid, 3.8142 (5) Å) and the pyridyl rings (centroid to centroid, 3.8142 (5) Å) and the pyridyl rings (centroid to centroid, 3.8142 (5) Å) links the molecules into a one-dimensional chain (Fig. 2).

Experimental

To a green solution of salicylaldehyde (23 mg, 0.19 mmol) and Cu(OAc)₂.H₂O (11 mg, 0.05 mmol) in ethanol (7 ml) was added slowly a solution of 2-aminopyridine (21 mg, 0.22 mmol) in ethanol (1 ml). The resulting mixture was allowed to stand still and brown crystalline needles were grown after 1 day. IR (KBr): v = 3435, 1611, 1444, 1326, 1187 cm⁻¹.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{ed}$ (C).

Figures

Fig. 1. The molecular structure, with atom labels and 25% probability thermal ellipsoids.

Fig. 2. The one-dimensional chain constructed by the π - π stacking.

Bis{2-[(2-pyridyl)iminomethyl]phenolato}copper(II)

Crystal	data
---------	------

$[Cu(C_{12}H_9N_2O)_2]$	Z = 1
$M_r = 457.96$	$F_{000} = 235$
Triclinic, PT	$D_{\rm x} = 1.561 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 3.8142 (5) Å	Cell parameters from 1475 reflections
b = 11.2170 (10) Å	$\theta = 2.2 - 27.5^{\circ}$
c = 11.9001 (12) Å	$\mu = 1.15 \text{ mm}^{-1}$
$\alpha = 106.884 \ (2)^{\circ}$	T = 298 K
$\beta = 90.3740 \ (10)^{\circ}$	Needle, brown
$\gamma = 90.2890 \ (10)^{\circ}$	$0.41 \times 0.17 \times 0.15 \text{ mm}$
$V = 487.16 (9) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	1695 independent reflections
Radiation source: fine-focus sealed tube	1481 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.015$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -4 \rightarrow 4$
$T_{\min} = 0.650, \ T_{\max} = 0.846$	$k = -13 \rightarrow 13$
2547 measured reflections	$l = -9 \longrightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0266P)^2 + 0.355P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} \leq 0.001$
1695 reflections	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$

142 parameters

$$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$$

Primary atom site location: structure-invariant direct Extinction correction: none

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.5000	0.5000	0.5000	0.03882 (17)
N1	0.2225 (6)	0.15806 (19)	0.55001 (19)	0.0400 (5)
N2	0.4891 (5)	0.31537 (17)	0.48298 (17)	0.0305 (5)
01	0.8250 (5)	0.46999 (15)	0.37229 (15)	0.0413 (5)
C1	0.5395 (7)	0.2344 (2)	0.3821 (2)	0.0331 (6)
H1	0.4927	0.1517	0.3774	0.040*
C2	0.6590 (7)	0.2583 (2)	0.2773 (2)	0.0325 (6)
C3	0.7979 (7)	0.3757 (2)	0.2770 (2)	0.0326 (6)
C4	0.9196 (7)	0.3865 (3)	0.1691 (2)	0.0389 (6)
H4	1.0121	0.4623	0.1658	0.047*
C5	0.9057 (7)	0.2886 (3)	0.0689 (2)	0.0459 (7)
Н5	0.9870	0.2994	-0.0010	0.055*
C6	0.7726 (8)	0.1734 (3)	0.0696 (2)	0.0494 (7)
H6	0.7657	0.1072	0.0011	0.059*
C7	0.6524 (8)	0.1595 (2)	0.1727 (2)	0.0427 (7)
H7	0.5635	0.0825	0.1738	0.051*
C8	0.4001 (6)	0.2651 (2)	0.5769 (2)	0.0316 (6)
C9	0.5106 (7)	0.3277 (3)	0.6892 (2)	0.0412 (6)
Н9	0.6317	0.4030	0.7045	0.049*
C10	0.4374 (8)	0.2761 (3)	0.7780 (3)	0.0494 (7)
H10	0.5085	0.3160	0.8547	0.059*
C11	0.2574 (8)	0.1647 (3)	0.7520 (3)	0.0509 (8)
H11	0.2045	0.1278	0.8105	0.061*
C12	0.1583 (8)	0.1094 (3)	0.6381 (3)	0.0491 (8)
H12	0.0394	0.0335	0.6208	0.059*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0584 (3)	0.0241 (2)	0.0318 (3)	-0.0022 (2)	0.0154 (2)	0.00443 (18)
N1	0.0457 (14)	0.0298 (11)	0.0452 (13)	-0.0023 (10)	0.0071 (11)	0.0116 (10)
N2	0.0343 (12)	0.0261 (10)	0.0306 (11)	-0.0019 (9)	0.0037 (9)	0.0073 (9)
01	0.0597 (13)	0.0304 (9)	0.0301 (10)	-0.0079 (9)	0.0143 (9)	0.0029 (8)
C1	0.0363 (15)	0.0233 (12)	0.0375 (14)	0.0001 (10)	0.0005 (11)	0.0054 (11)
C2	0.0341 (14)	0.0286 (13)	0.0312 (13)	0.0052 (11)	0.0027 (11)	0.0030 (10)
C3	0.0335 (14)	0.0330 (13)	0.0290 (13)	0.0046 (11)	0.0036 (11)	0.0051 (11)
C4	0.0384 (16)	0.0444 (15)	0.0339 (14)	-0.0010 (12)	0.0047 (12)	0.0112 (12)
C5	0.0437 (17)	0.065 (2)	0.0258 (14)	0.0025 (14)	0.0037 (12)	0.0081 (13)
C6	0.0526 (19)	0.0517 (18)	0.0318 (15)	0.0027 (14)	0.0007 (13)	-0.0071 (13)
C7	0.0480 (17)	0.0340 (14)	0.0391 (15)	0.0012 (12)	0.0020 (13)	-0.0006 (12)
C8	0.0324 (14)	0.0280 (12)	0.0363 (14)	0.0036 (10)	0.0045 (11)	0.0120 (11)

supplementary materials

C9 C10 C11 C12	0.0401 (16) 0.0501 (18) 0.0545 (19) 0.0541 (19)	0.0438 (16) 0.064 (2) 0.0555 (19) 0.0367 (15)	0.0404 (16) 0.0370 (16) 0.0544 (19) 0.063 (2)	-0.0012 (12) 0.0118 (15) 0.0185 (15) 0.0027 (13)	-0.0032 (12) 0.0021 (13) 0.0182 (15) 0.0179 (15)	0.0136 (13) 0.0186 (14) 0.0336 (16) 0.0240 (14)
Geometric param	neters (Å, °)					
Cu1—O1		1.9212 (17)	C4—H4	4	0.930	0
$Cu1-O1^{i}$		1.9212 (17)	C5—C6	5	1.388	(4)
Cul N2 ⁱ		2 0216 (19)	С5—Н	5	0.930	0
Cu1 = N2 Cu1 = N2		2.0216(19)	C6C	7	1 363	(4)
N1—C8		1.330 (3)	С6—Н	6	0.930	0
N1—C12		1.339 (3)	С7—Н	7	0.930	0
N2—C1		1.294 (3)	C8—C9	9	1.379	(4)
N2—C8		1.433 (3)	С9—С	10	1.373	(4)
O1—C3		1.310 (3)	С9—Н	9	0.930	0
C1—C2		1.426 (3)	C10—0	211	1.376	(4)
C1—H1		0.9300	C10—H	410	0.930	0
C2—C7		1.406 (3)	C11—C	212	1.366	(4)
C2—C3		1.419 (3)	C11—H	111	0.930	0
C3—C4		1.406 (3)	C12—H	112	0.930	0
C4—C5		1.366 (4)				
O1—Cu1—O1 ⁱ		180.000 (1)	C4—C:	5—H5	119.4	
O1—Cu1—N2 ⁱ		90.50 (8)	C6—C:	5—H5	119.4	
O1 ⁱ —Cu1—N2 ⁱ		89.50 (7)	С7—Се	6—C5	118.6	(3)
O1—Cu1—N2		89.50 (7)	C7—C0	6—Н6	120.7	
O1 ⁱ —Cu1—N2		90.50 (8)	C5—C6	6—H6	120.7	
N2 ⁱ —Cu1—N2		180.000 (1)	C6—C	7—С2	121.8	(3)
C8—N1—C12		116.8 (2)	C6—C	7—H7	119.1	
C1—N2—C8		115.7 (2)	C2—C	7—H7	119.1	
C1—N2—Cu1		120.87 (16)	N1—C	8—С9	123.6	(2)
C8—N2—Cu1		123.30 (15)	N1—C	8—N2	117.7	(2)
C3—O1—Cu1		123.48 (16)	C9—C8	8—N2	118.7	(2)
N2—C1—C2		127.1 (2)	C10—C	С9—С8	118.3	(3)
N2—C1—H1		116.4	C10—0	С9—Н9	120.9	
C2—C1—H1		116.4	C8—C9	9—Н9	120.9	
C7—C2—C3		119.6 (2)	С9—С	10—C11	119.2	(3)
C7—C2—C1		118.2 (2)	C9—C	10—H10	120.4	
C3—C2—C1		122.1 (2)		CI0—HI0	120.4	
01 - C3 - C4		120.4 (2)	C12—0	CII—CI0	118.4	(3)
$01 - C_3 - C_2$		122.7(2)	C12—C	CII—HII	120.8	
$C_4 - C_3 - C_2$		110.9 (2)	C10(11—HII	120.8	(2)
C_{3} C_{4} U_{4}		121.0 (3)	IN I—C	12—СП 12—Ц12	123.8	(3)
$C_3 - C_4 - \Pi_4$		119.1		12—п12 Г12—н12	118.1	
C_{3} C_{4} C_{4} C_{5} C_{6}		121 3 (3)		.12-1112	110.1	
$01 - Cu^1 = N^2 + Cu^2$	C1	-295(2)		1	_0.5.4	(A)
01-Cu1-112-		27.5 (2)	0,-0	- 03-00	0.5 (יד.

O1 ⁱ —Cu1—N2—C1	150.5 (2)	C4—C5—C6—C7	0.5 (4)
O1—Cu1—N2—C8	155.47 (19)	C5—C6—C7—C2	0.2 (4)
O1 ⁱ —Cu1—N2—C8	-24.53 (19)	C3—C2—C7—C6	-0.8 (4)
N2 ⁱ —Cu1—O1—C3	-138.9 (2)	C1—C2—C7—C6	-177.8 (3)
N2—Cu1—O1—C3	41.1 (2)	C12—N1—C8—C9	-1.5 (4)
C8—N2—C1—C2	-174.2 (2)	C12—N1—C8—N2	176.5 (2)
Cu1—N2—C1—C2	10.4 (4)	C1—N2—C8—N1	-30.6 (3)
N2-C1-C2-C7	-171.7 (3)	Cu1—N2—C8—N1	144.60 (19)
N2—C1—C2—C3	11.3 (4)	C1—N2—C8—C9	147.5 (2)
Cu1—O1—C3—C4	149.6 (2)	Cu1—N2—C8—C9	-37.2 (3)
Cu1—O1—C3—C2	-32.7 (3)	N1—C8—C9—C10	0.8 (4)
C7—C2—C3—O1	-177.1 (2)	N2-C8-C9-C10	-177.2 (2)
C1—C2—C3—O1	-0.2 (4)	C8—C9—C10—C11	-0.1 (4)
C7—C2—C3—C4	0.7 (4)	C9—C10—C11—C12	0.0 (4)
C1—C2—C3—C4	177.6 (2)	C8—N1—C12—C11	1.5 (4)
O1—C3—C4—C5	177.8 (2)	C10-C11-C12-N1	-0.8 (5)
C2—C3—C4—C5	-0.1 (4)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C1—H1…N1	0.93	2.29	2.684 (3)	105

Fig. 1

Fig. 2